Supplemental Labeling

EPA Reg. No.: 279-3246
Expiration Date: December 2, 2020

AERIAL APPLICATION FOR BROADLEAF AND GRASS
WEED CONTROL IN SOYBEANS

DIRECTIONS FOR USE

IT IS A VIOLATION OF FEDERAL LAW TO USE THIS PRODUCT IN A MANNER INCONSISTENT WITH ITS LABELING. ALL APPLICABLE DIRECTIONS, RESTRICTIONS AND PRECAUTIONS ON THE EPA REGISTERED LABEL ARE TO BE FOLLOWED.

This supplemental labeling must be in the possession of the user at the time of pesticide application. Read the label affixed to the container for Authority First DF Herbicide before applying. Use of Authority First DF Herbicide according to this labeling is subject to the use precautions and limitations imposed by the label affixed to the container for Authority First DF Herbicide.

AERIAL APPLICATION

Use nozzle types and arrangements that will provide optimum spray distribution and maximum coverage. To minimize spray drift, apply Authority First DF Herbicide in a spray volume in a minimum of 5 gallons of spray solution per acre. Increase the spray volume for fields with dense weed pressure. Do not apply when wind speed favors drift beyond the area intended for treatment.

SPRAY DRIFT REDUCTION ADVISORY

AVOIDING SPRAY DRIFT AT THE APPLICATION SITE IS THE RESPONSIBILITY OF THE APPLICATOR AND THE GROWER.

The interaction of many equipment and weather related factors determine the potential for spray drift. The applicator and the grower are responsible for considering all these factors when making decisions. The following drift management requirements must be followed to avoid off-target movement from applications to agricultural field crops.
Where States and local governments have more stringent regulations, they must be observed.

Droplet Size Information
Reduce drift potential by applying large droplets. The optimum drift management strategy is to apply the largest droplets that will provide sufficient coverage and control. Applying larger droplets reduces drift potential, but will not prevent drift when applications are made improperly, or under unfavorable environmental conditions (See Wind, Temperature and Humidity and Temperature Inversions).

VMD – VMD is the expression of the droplet size of the spray cloud. The VMD value means that 50% of the droplets are larger than the expressed value and 50% of the droplets are smaller than the expressed value. Optimum spray clouds should be 450 microns with fewer than 10% of the droplets being 200 microns or smaller.

Volume – Use high flow rate nozzles to apply the highest practical spray volume. Nozzles with higher rated flows usually produce larger droplets.

Pressure – Do not exceed the nozzle manufacturer’s recommended pressures. For many nozzle types, lower pressure produces larger droplets. When higher flow rates are needed, use higher flow rate nozzles instead of increasing pressure.

Number of Nozzles – Use the minimum number of nozzles that provide uniform coverage.

Nozzle Type – Use a nozzle type that is designed for the intended application. With most nozzle types narrower spray angles product larger droplets. Consider using low drift nozzles for both ground and aerial applications. Solid stream nozzles oriented straight back usually produce the largest droplets and the lowest drift potential in aerial applications.

Nozzle Orientation – For aerial application, the recommended practice is to orient nozzles so that the spray is released parallel to the airstream. This orientation usually produces larger droplets as compared to other nozzle orientations. Significant nozzle deflection from horizontal will reduce droplet size and increase drift potential.

Boom Length – For some aerial use patterns, reducing the effective boom length to less than ¾ the wingspan or rotor length may further reduce drift without reduction swath width.

Application Height – Making applications at the lowest height practical reduces exposure of spray droplets to evaporation and wind movement. Aerial applications should not be made at a height greater than 10 feet above the top of the target plant canopy unless a greater height is required for aircraft safety.

Swath Adjustment – When aerial applications are made with a crosswind, the swath will be displaced downwind. Therefore, on the upwind and downwind edges of the field, the applicator must compensate for this displacement by the path of the aircraft upwind. Swatch adjustment or offset distance should increase when conditions favor increased drift potential (higher wind, smaller droplets, etc.).

Wind – Drift potentials are lowest between wind speeds of 3 to 10 miles per hour. However, many factors, including droplet size and equipment type determine drift potential at any given wind speed. Applications in wind conditions outside of this range could increase the risk of off-target effects and should be avoided. Note that local terrain can influence wind patterns. Every applicator should be familiar with local wind patterns and how they affect spray drift.

Temperature and Humidity - When making applications in conditions of low relative humidity set up equipment to produce larger droplets to compensate for evaporation. Droplet evaporation is most severe when conditions are both hot and dry.

Temperature Inversions – Do not apply Authority First DF Herbicide during temperature inversions because the drift potential is high. Temperature inversions restrict vertical air mixing, which causes small suspended droplets to remain in a concentrated cloud. This cloud can move in unpredictable directions due to the light variable winds common during inversions. Temperature inversions are characterized by increasing temperatures with altitude and are common on nights with limited cloud cover and light to no wind. They begin to form as the sun sets and often continue into the following morning. Their presence can be indicated by ground fog. However, if fog is not present, inversions can also be identified by the movement of smoke from a ground source or a smoke generator. Smoke that moves upward and rapidly dissipates indicates good vertical air mixing.

Sensitive Areas – Applications should be made when the wind is blowing away from adjacent sensitive areas (e.g. residential areas, bodies of water, known habitats for threatened or endangered species and non-target crops).